
Math 2050, summary of Week 8

1. Ordering and convergence

We are always working on the following situation: A ⊂ R and c is a
cluster point of A. We have known that the limit of function at cluster
points have similar properties as the limit of sequence. We also have
the following related to the ordering.

Theorem 1.1. Let f, g, h : A→ R, if

f(x) ≤ g(x) ≤ h(x)

for all x ∈ A, then
(1) if limx→c f = F , limx→c g = G and limx→c h = H, we have

F ≤ G ≤ H.

(2) if limx→c f = limx→c h = L, then g has a limit as x → c. In
particular the limit is L.

The importance of this result to that whenever we have well-behaved
competitor, we can determine the convergence at some particular point.

Examples:

(1) limx→0
sinx
x

= 1 using x− 1
6
x3 ≤ sinx ≤ x for all x ≥ 0.

(2) limx→0
cosx−1

x
= 0 using −1

2
x2 ≤ cosx− 1 ≤ 0 for x > 0.

(3) limx→0 x sin(1/x) = 0 using |x sinx| ≤ |x|.

2. Some variation of limits

2.1. One sided limits. Consider the example

(2.1) f(x) =

{
e1/x, if x 6= 0;
0, if x = 0;

Then the function has different behaviour when x tends to 0 from
different directions. It is sometimes more important to consider one
particular direction rather than all directions.

Definition 2.1. Let A ⊂ R and c is a cluster point of A ∩ (c,+∞),
f : A → R. We say that limx→c+ f = L if ∀ε > 0,∃δ > 0 such that if
x ∈ A where 0 < x− c < δ, then

|f(x)− L| < ε.
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(similar for the left hand limit)
As expected from the theory for function, we have the following

characterization using sequence which will be more user friendly when
we discuss the divergence.

Theorem 2.1. Let A ⊂ R and c is a cluster point of A ∩ (c,+∞),
f : A→ R. Then limx→c+ f = L if and only if for any xn ∈ A∩(c,+∞)
where xn → c, we have f(xn)→ L.

Example: The function f defined at the beginning have limx→0− f =
0 but has no limit as x→ 0+.

2.2. Infinite limit. The behaviour of f defined above as x → 0+ is
divergent, but its divergence is relatively well-behaved as f(x)→ +∞.

Definition 2.2. Let A ⊂ R and c is a cluster point of A, f : A → R.
We say that limx→c f = +∞ if ∀α > 0, there is δ > 0 such that if
x ∈ A such that 0 < |x− c| < δ, then f(x) > α.

One might compare this with the sequence.

Definition 2.3. A sequence {an} is said to be divergent to +∞ if
∀α > 0,∃N ∈ N such that for all n > N , an > α.

The sequence criterion can be formulated similarly.

Theorem 2.2. Let A ⊂ R and c is a cluster point of A, f : A → R.
Then limx→c f = +∞ if and only if for any xn ∈ A\{c} where xn → c,
we have f(xn)→ +∞.

2.3. limit at infinity. The example mentioned above has certain de-
cay properties as x→∞. To make it rigorous, we have

Definition 2.4. Let A ⊂ R and suppose (a,+∞) ⊂ A for some a ∈ R,
and f : A → R. We say that limx→+∞ f = L if ∀ε > 0, there α ∈ R
such that for all x > α,

|f(x)− L| < ε.

Similarly, we have

Definition 2.5. Let A ⊂ R and suppose (a,+∞) ⊂ A for some a ∈ R,
and f : A→ R. We say that limx→+∞ f = +∞ if ∀β > 0, there α ∈ R
such that for all x > α,

f(x) > β.

Example:

(1) limx→+∞ x
m = +∞ for all m ∈ N;

(2) limx→+∞ p(x) = +∞ if p(x) =
∑n

i=0 aix
i where an > 0;

(3) limx→+∞ e
−x = 0.
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3. Continuous function

Recall that to consider the limit limx→c f = L, we allow the situation:

(3.1) f(x) =

{
x, if x 6= 0;
1, if x = 0;

It is clear that f(0) 6= limx→0 f . But the limit is still well-behaved.
(That is why we only consider x ∈ A, 0 < |x− c| < δ in the definition
without considering x = c.)

We now pay more attention to the case when f is continuous. Want
to rule out the above situation!

Definition 3.1. Let A ⊂ R, c ∈ A and f : A → R. We say that f is
continuous at c if ∀ε > 0,∃δ > 0 such that for all x ∈ A, |x − c| < δ,
we have

|f(x)− f(c)| < ε.

Remark:

(1) If c is a cluster point, then the continuity implies i) c ∈ A; ii) f
has limit at c; iii)limx→c f = f(c).

(2) if c is not a cluster point, then there is δ > 0 such that A∩{y :
0 < |y − c| < δ} = ∅. Hence, we always have the continuity f
at c.

In term of sequence criterion:

Theorem 3.1. Let A ⊂ R and c ∈ A, f : A → R. Then limx→c f =
f(c) if and only if for any xn ∈ A where xn → c, we have f(xn)→ f(c).

Example:

(a)

(3.2) f(x) =

{
1, if x ∈ Q;
0, otherwise.

Then f is discontinuous at any point c ∈ R. If c ∈ Q, then
f(c) = 1. But we can take xn /∈ Q by density of Q′ such that
xn → c so that f(xn) ≡ 0. Similarly, if c /∈ Q, we have similar
contradicting sequence.

(b)

(3.3) f(x) =

{
1
n
, if x = m

n
where gcd(m,n) = 1;

0, otherwise.
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Then f is discontinuous at c ∈ Q and is continuous at c /∈ Q.
Discontinuous is similar to the first example. We may assume
c > 0.

To show the continuity, for ε > 0, fix N such that N−1 < ε.
Consider the set {(m,n) : n ≤ N}, if |mn−1 − c| < c, we have

m ≤ 2cn ≤ 2cN.

Therefore, there is only finitely many element in form of x =
mn−1 so that |x− c| < 1 and n ≤ N . Since c /∈ Q, c is not one
of the element. Hence, c is isolated from the set {mn−1 : n ≤
N} ∩ {x : |x− c| < 1}. Therefore, we can find δ > 0 such that

B = {x : |x− c| < δ} ∩ {mn−1 : n ≤ N} = ∅.
Hence, for x ∈ B, we have f(x) = 1

n
< 1

N
< ε.


